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ABSTRACT 

Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of 

the touted gains in the cloud model come from resource multiplexing through virtualization technology. In this 

paper, we present a system that uses virtualization technology to allocate data center resources dynamically 

based on application demands and support green computing by optimizing the number of servers in use. We 

introduce the concept of “skewness” to measure the unevenness in the multi-dimensional resource utilization of 

a server. By minimizing skewness, we can combine different types of workloads nicely and improve the overall 

utilization of server resources. We develop a set of heuristics that prevent overload in the system effectively 

while saving energy used. Trace driven simulation and experiment results demonstrate that our algorithm 

achieves good performance. 
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I. Introduction 
The elasticity and the lack of upfront capital 

investment offered by cloud computing is appealing 

to many businesses. There is a lot of discussion on 

the benefits and costs of the cloud model and on how 

to move legacy applications onto the cloud platform. 

Here we study a different problem: how can a cloud 

service provider best multiplex its virtual resources 

onto the physical hardware? This is important 

because much of the touted gains in the cloud model 

come from such multiplexing. Studies have found 

that servers in many existing data centers are often 

severely under-utilized due to over-provisioning for 

the peak demand [1] [2]. The cloud model is 

expected to make such practice unnecessary by 

offering automatic scale up and down in response to 

load variation. Besides reducing the hardware cost, it 

also saves on electricity which contributes to a 

significant portion of the operational expenses in 

large data centers.Virtual machine monitors (VMMs) 

like Xen provide a mechanism for mapping virtual 

machines (VMs) to physical resources [3]. This 

mapping is largely hidden from the cloud users. 

Users with the Amazon EC2 service [4], for example, 

do not know where their VM instances run. It is up to 

the cloud provider to make sure the underlying 

physical machines (PMs) have sufficient resources to 

meet their needs. VM live migration technology 

makes it possible to change the mapping between 

VMs and PMs while applications are running [5], [6]. 

However, a policy issue remains as how to decide the 

mapping adaptively so that the resource demands of 

VMs are met while the number of PMs used is 

minimized. This is challenging when the resource 

needs of VMs are heterogeneous due to the diverse 

set of applications they run and vary with time as the 

workloads grow and shrink. The capacity of PMs can 

also be heterogenous because multiple generations of 

hardware co-exist in a data center. 

 

We aim to achieve two goals in our algorithm: 

• overload avoidance: the capacity of a PM 

should be sufficient to satisfy the resource needs of 

all VMs running on it. Otherwise, the PM is 

overloaded and can lead to degraded performance of 

its VMs. 

• green computing: the number of PMs used 

should be minimized as long as they can still satisfy 

the needs of all VMs. Idle PMs can be turned off to 

save energy. 

 

There is an inherent trade-off between the two goals 

in the face of changing resource needs of VMs. For 

overload avoidance, we should keep the utilization of 

PMs low to reduce the possibility of overload in case 

the resource needs of VMs increase later. For green 

computing, we should keep the utilization of PMs 

reasonably high to make efficient use of their energy. 

In this paper, we present the design and 

implementation of an automated resource 

management system that achieves a good balance 
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between the two goals. We make the following 

contributions: 

• We develop a resource allocation system 

that can avoid overload in the system effectively 

while minimizing the number of servers used.We 

introduce the concept of "skewness" to measure the 

uneven utilization of a server. By minimizing 

skewness, we can improve the overall utilization of 

servers in the face of multi-dimensional resource 

constraints. 

• We design a load prediction algorithm that 

can capture the future resource usages of applications 

accurately without looking inside the VMs. The 

algorithm can capture the rising trend of resource 

usage patterns and help reduce the placement churn 

significantly. 

 
Fig. 1. System Architecture 

 

algorithm are presented in Section 4. Section 5 and 6 

present simulation and experiment results, 

respectively. Section 7 discusses related work. 

Section 8 concludes. 

 

in its CPU scheduler. The MM Alloter on domain 0 

of each node is responsible for adjusting the local 

memory allocation. 

The hot spot solver in our VM Scheduler detects if 

the resource utilization of any PM is above the hot 

threshold (i.e., a hot spot). If so, some VMs running 

on them will be migrated away to reduce their load. 

The cold spot solver checks if the average utilization 

of actively used PMs (APMs) is below the green 

computing threshold. If so, some of those PMs could 

potentially be turned off to save energy. It identifies 

the set of PMs whose utilization is below the cold 

threshold (i.e., cold spots) and then attempts to 

migrate away all their VMs. It then compiles a 

migration list of VMs and passes it to the Usher 

CTRL for execution. 

 

II. System overview 

The architecture of the system is presented in 

Figure 1. Each PM runs the Xen hypervisor (VMM) 

which supports a privileged domain 0 and one or 

more domain U [3]. Each VM in domain U 

encapsulates one or more applications such as Web 

server, remote desktop, DNS, Mail, Map/Reduce, etc. 

We assume all PMs share a backend storage. 

The multiplexing of VMs to PMs is managed using 

the Usher framework [7]. The main logic of our 

system is implemented as a set of plug-ins to Usher. 

Each node runs an Usher local node manager (LNM) 

on domain 0 which collects the usage statistics of 

resources for each VM on that node. The CPU and 

network usage can be calculated by monitoring the 

scheduling events in Xen. The memory usage within 

a VM, however, is not visible to the hypervisor. One 

approach is to infer memory shortage of a VM by 

observing its swap activities [8]. Unfortunately, the 

guest OS is required to install a separate swap 

partition. Furthermore, it may be too late to adjust the 

memory allocation by the time swapping occurs. 

Instead we implemented a working set prober (WS 

Prober) on each hypervisor to estimate the working 

set sizes of VMs running on it. We use the random 

page sampling technique as in the VMware ESX 

Server [9]. 

The statistics collected at each PM are forwarded to 

the Usher central controller (Usher CTRL) where our 

VM scheduler runs. The VM Scheduler is invoked 

periodically and receives from the LNM the resource 

demand history of VMs, the capacity and the load 

history of PMs, and the current layout of VMs on 

PMs. 

The scheduler has several components. The predictor 

predicts the future resource demands of VMs and the 

future load of PMs based on past statistics. We 

compute the load of a PM by aggregating the 

resource usage of its VMs. The details of the load 

prediction algorithm will be described in the next 

section. The LNM at each node first attempts to 

satisfy the new demands locally by adjusting the 

resource allocation of VMs sharing the same VMM. 

Xen can change the CPU allocation among the VMs 

by adjusting their weights 

 

III. Predicting Future Resource Needs 

We need to predict the future resource needs of 

VMs. As said earlier, our focus is on Internet 

applications. One solution is to look inside a VM for 

application level statistics, e.g., by parsing logs of  

pending requests. Doing so requires modification of 

the VM which may not always be possible. Instead, 

we make our prediction based on the past external 

behaviors of VMs. Our first attempt was to calculate 

an exponentially weighted moving average (EWMA) 

using a TCP-like scheme:  

 

E(t) = a   E(t — 1) + (1 — a) * O(t), 0 < a < 1 
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where E(t) and O(t) are the estimated and the 

observed load at time t, respectively. a reflects a 

tradeoff between stability and responsiveness. 

We use the EWMA formula to predict the CPU load 

on the DNS server in our university. We measure the 

load every minute and predict the load in the next 

minute. Figure 2 (a) shows the results for a = 0.7. 

Each dot in the figure is an observed value and the 

curve represents the predicted values. Visually, the 

curve cuts through the middle of the dots which 

indicates a fairly accurate prediction. This is also 

verified by the statistics in Table 1. The parameters in 

the parenthesis are the a values. W is the length of the 

measurement window (explained later). The 

"median" error is calculated as a percentage of the 

observed value: \E(t) — O(t)\/O(t). The "higher" and 

"lower" error percentages are the percentages of 

predicted values that are higher or lower than the 

observed values, respectively. As we can see, the 

prediction is fairly accurate with roughly equal 

percentage of higher and lower values. 

 
Although seemingly satisfactory, this formula does 

not capture the rising trends of resource usage. For 

example, when we see a sequence of O(t) = 10, 

20,30, and 40, it is reasonable to predict the next 

value to be 50. Unfortunately,

 

 
(a) EWMA: a = 0.7, W = 1 (b) FUSD: t a = -0.2, f a = 0.7, W = 1 (c) FUSD: t a = -0.2, f a - Fig. 2. CPU 

load prediction for the DNS server at our university. W is the measurement window. 

 
 

when a is between 0 and 1, the predicted value is 

always between the historic value and the observed 

one. To reflect the "acceleration", we take an 

innovative approach by setting a to a negative value. 

When -1 < a < 0, the above formula can be 

transformed into the following: 

 

E(t) = — |a| * E(t — 1) + (1 + |a|) * O(t) = O(t) + |a| * 

(O(t) — E(t — 1)) 

 

On the other hand, when the observed resource usage 

is going down, we want to be conservative in 

reducing our estimation. Hence, we use two 

parameters, t a and I a, to control how quickly E(t) 

adapts to changes when O(t) is increasing or 

decreasing, respectively. We call this the FUSD (Fast 

Up and Slow Down) algorithm. Figure 2 (b) shows 

the effectiveness of the FUSD algorithm for t a = —

0.2, I a = 0.7. (These values are selected based on 

field experience with traces collected for several 

Internet applications.) Now the predicted values are 

higher than the observed ones most of the time: 77% 

according to Table 1. The median error is increased 
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to 9.4% because we trade accuracy for safety. It is 

still quite acceptable nevertheless. 

So far we take O(t) as the last observed value. Most 

applications have their SLOs specified in terms of a 

certain percentiles of requests meeting a specific 

performance level. More generally, we keep a 

window of W recently observed values and take O(t) 

as a high percentile of them. Figure 2 (c) shows the 

result when W = 8 and we take the 90%th percentile 

of the peak resource demand. The figure shows that 

the prediction gets substantially better. 

We have also investigated other prediction 

algorithms. Linear Auto-Regression(AR) models, for 

example, are broadly adopted in load prediction by 

other works [10] [11] [12]. It models a predictive 

value as linear function of its past observations. 

Model parameters are determined by training with 

historical values. AR predictors are capable of 

incorporating the seasonal pattern of load change. For 

instance, the SPAR(4,2) [10] estimate the future 

logging rate of MSN clients from six past 

observations, two of which are the latest observations 

and the other four at the same time in the last four 

weeks. 

We compare SPAR(4,2) and FUSD(-0.2,0.7) in 

figure 3. 'lpct' refers to the percentage of low errors 

while 'std' refers to standard deviation. Both 

algorithms are used to predict the CPU utilization of 

the aforementioned DNS server in a one-day 

duration. The predicting window is eight minute. The 

standard deviation (std) of SPAR (4,2) is about 16% 

smaller than that of FUSD (-0.2,0.7), which means 

SPAR (4,2) achieves sightly better percision. This is 

because it takes advantage of tiding pattern of the 

load. However, SPAR(4,2) neither avoid low 

prediction nor smooth the load. The requirement of a 

training phase to determine parameters is 

inconvenient, especially when the load pattern 

changes. Therefore we adopt the simpler EWMA 

variance. Thorough investigation on prediction 

algorithms are left as future work. 

As we will see later in the paper, the prediction 

algorithm plays an important role in improving the 

stability and performance of our resource allocation 

decisions. 

 

IV. The Skewness Algorithm 

 
Analysis of the algorithm is presented in Section 1 in 

the complementary file. 

 

4.1 Hot and cold spots Our algorithm executes 

periodically to evaluate the resource allocation status 

based on the predicted future resource demands of 

VMs. We define a server as a hot spot if the 

utilization of any of its resources is above a hot 

threshold. This indicates that the server is overloaded 

and hence some VMs running on it should be 

migrated away. We define the temperature of a hot 

spot p as the square sum of its resource utilization 

beyond the hot threshold:  

 
where R is the set of overloaded resources in server p 

and rt is the hot threshold for resource r. (Note that 

only overloaded resources are considered in the 

calculation.) The temperature of a hot spot reflects its 

degree of overload. If a server is not a hot spot, its 

temperature is zero. We define a server as a cold spot 

if the utilizations of all its resources are below a cold 

threshold. This indicates that the server is mostly idle 

and a potential candidate to turn off to save energy. 

However, we do so only when the average resource 

utilization of all actively used servers (i.e., APMs) in 

the system is below a green computing threshold. A 

server is actively used if it has at least one VM 

running. Otherwise, it is inactive. Finally, we define 

the warm threshold to be a level of resource 

utilization that is sufficiently high to justify having 

the server running but not so high as to risk becoming 

a hot spot in the face of temporary fluctuation of 

application resource demands. Different types of 

resources can have different thresholds. For example, 

we can define the hot thresholds for CPU and 

memory resources to be 90% and 80%, respectively. 

Thus a server is a hot spot if either its CPU usage is 

above 90% or its memory usage is above 80%. 
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4.2 Hot spot mitigation We sort the list of hot spots in 

the system in descending temperature (i.e., we handle 

the hottest one first). Our goal is to eliminate all hot 

spots if possible. Otherwise, keep their temperature 

as low as possible. For each server p, we first decide 

which of its VMs should be migrated away. We sort 

its list of VMs based on the resulting temperature of 

the server if that VM is migrated away. We aim to 

migrate away the VM that can reduce the server's 

temperature the most. In case of ties, we select the 

VM whose removal can reduce the skewness of the 

server the most. For each VM in the list, we see if we 

can find a destination server to accommodate it. The 

server must not become a hot spot after accepting this 

VM. Among all such servers, we select one whose 

skewness can be reduced the most by accepting this 

VM. Note that this reduction can be negative which 

means we select the server whose skewness increases 

the least. If a destination server is found, we record 

the migration of the VM to that server and update the 

predicted load of related servers. Otherwise, we move 

on to the next VM in the list and try to find a 

destination server for it. As long as we can find a 

destination server for any of its VMs, we consider 

this run of the algorithm a success and then move on 

to the next hot spot. Note that each run of the 

algorithm migrates away at most one VM from the 

overloaded server. This does not necessarily 

eliminate the hot spot, but at least reduces its 

temperature. If it remains a hot spot in the next 

decision run, the algorithm will repeat this process. It 

is possible to design the algorithm so that it can 

migrate away multiple VMs during each run. But this 

can add more load on the related servers during a 

period when they are already overloaded. We decide 

to use this more conservative approach and leave the 

system some time to react before initiating additional 

migrations. 4.3 Green computing When the resource 

utilization of active servers is too low, some of them 

can be turned off to save energy. This is handled in 

our green computing algorithm. The challenge here is 

to reduce the number of active servers during low 

load without sacrificing performance either now or in 

the future. We need to avoid oscillation in the system. 

Our green computing algorithm is invoked when the 

average utilizations of all resources on active servers 

are below the green computing threshold. We sort the 

list of cold spots in the system based on the 

ascending order of their memory size. Since we need 

to migrate away all its VMs before we can shut down 

an under-utilized server, we define the memory size 

of a cold spot as the aggregate memory size of all 

VMs running on it. Recall that our model assumes all 

VMs connect to a shared back-end storage. Hence, 

the cost of a VM live migration is determined mostly 

by its memory footprint. The Section 7 in the 

complementary file explains why the memory is a 

good measure in depth. We try to eliminate the cold 

spot with the lowest cost first. For a cold spot p, we 

check if we can migrate all its VMs somewhere else. 

For each VM on p, we try to find a destination server 

to accommodate it. The resource utilizations of the 

server after accepting the VM must be below the 

warm threshold. While we can save energy by 

consolidating under-utilized servers, overdoing it 

may create hot spots in the future. The warm 

threshold is designed to prevent that. If multiple 

servers satisfy the above criterion, we prefer one that 

is not a current cold spot. This is because increasing 

load on a cold spot reduces the likelihood that it can 

be eliminated. However, we will accept a cold spot as 

the destination server if necessary. All things being 

equal, we select a destination server whose skewness 

can be reduced the most by accepting this VM. If we 

can find destination servers for all VMs on a cold 

spot, we record the sequence of migrations and 

update the predicted load of related servers. 

Otherwise, we do not migrate any of its VMs. The 

list of cold spots is also updated because some of 

them may no longer be cold due to the proposed VM 

migrations in the above process. The above 

consolidation adds extra load onto the related servers. 

This is not as serious a problem as in the hot spot 

mitigation case because green computing is initiated 

only when the load in the system is low. 

Nevertheless, we want to bound the extra load due to 

server consolidation. We restrict the number of cold 

spots that can be eliminated in each run of the 

algorithm to be no more than a certain percentage of 

active servers in the system. This is called the 

consolidation limit. Note that we eliminate cold spots 

in the system only when the average load of all active 

servers (APMs) is below the green computing 

threshold. Otherwise, we leave those cold spots there 

as potential destination machines for future 

offloading. This is consistent with our philosophy 

that green computing should be conducted 

conservatively. 4.4 Consolidated movements The 

movements generated in each step above are not 

executed until all steps have finished. The list of 

movements are then consolidated so that each VM is 

moved at most once to its final destination. For 

example, hot spot mitigation may dictate a VM to 

move from PM A to PM B, while green computing 

dictates it to move from PM B to PM C. In the actual 

execution, the VM is moved from A to C directly.  

 

V. Simulations 
We evaluate the performance of our algorithm 

using trace driven simulation. Note that our 

simulation uses the same code base for the algorithm 

as the real implementation in the experiments. This 

ensures the fidelity of our simulation results. Traces 

are per-minute server resource utilization, such as 
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CPU rate, memory usage, and network traffic 

statistics, collected using tools like "perfmon" 

(Windows), the "/proc" file system (Linux), 

"pmstat/vmstat/netstat" commands (Solaris), etc.. The 

raw traces are pre-processed into "Usher" format so 

that the simulator can read them. We collected the 

traces from a variety of sources: • Web InfoMall: the 

largest online Web archive in China (i.e., the 

counterpart of Internet Archive in the US) with more 

than three billion archived Web pages. • RealCourse: 

the largest online distance learning system in China 

with servers distributed across 13 major cities. • 

AmazingStore: the largest P2P storage system in 

China. We also collected traces from servers and 

desktop computers in our university including one of 

our mail servers, the central DNS server, and 

desktops in our department.We post-processed the 

traces based on days collected and use random 

sampling and linear combination of the data sets to 

generate the workloads needed. All simulation in this 

section uses the real trace workload unless otherwise 

specified. The default parameters we use in the 

simulation are shown in Table 2. We used the FUSD 

load prediction algorithm with t a = —0.2, I a = 0.7, 

and W = 8. In a dynamic system, those parameters 

represent good knobs to tune the performance of the 

system adaptively. We choose the default parameter 

values based on empirical experience working with 

many Internet applications. In the future, we plan to 

explore using AI or control theoretic approach to find 

near optimal values automatically. 5.1 Effect of 

thresholds on APMs We first evaluate the effect of 

the various thresholds used in our algorithm. We 

simulate a system with 100 PMs and 1000 VMs 

(selected randomly from the trace). We use random 

VM to PM mapping in the initial layout. The 

scheduler is invoked once per minute. The bottom 

part of Figure 4 show the daily load variation in the 

system. The x-axis is the time of the day starting at 

8am. The y-axis is overloaded with two meanings: 

the percentage of the load or from A to C directly. 

 
 

 

 

 

 

 

 
Fig. 4. Impact of thresholds on the number of APMs 

 

the percentage of APMs (i.e., Active PMs) in the 

system. Recall that a PM is active (i.e., an APM) if it 

has at least one VM running. As can be seen from the 

figure, the CPU load demonstrates diurnal patterns 

which decreases substantially after midnight. The 

memory consumption is fairly stable over the time. 

The network utilization stays very low. The top part 

of figure 4 shows how the percentage of APMs vary 

with the load for different thresholds in our 

algorithm. For example, 'h0.7 g0.3 c0.1' means that 

the hot, the green computing, and the cold thresholds 

are 70%, 30%, and 10%, respectively. Parameters not 

shown in the figure take the default values in Table 2. 

Our algorithm can be made more or less aggressive in 

its migration decision by tuning the thresholds. The 

figure shows that lower hot thresholds cause more 

aggressive migrations to mitigate hot spots in the 

system and increases the number of APMs, and 

higher cold and green computing thresholds cause 

more aggressive consolidation which leads to a 

smaller number of APMs. With the default thresholds 

in Table 2, the percentage of APMs in our algorithm 

follows the load pattern closely. To examine the 

performance of our algorithm in more extreme 

situations, we also create a synthetic workload which 

mimics the shape of a sine function (only the positive 

part) and ranges from 15% to 95% with a 20% 

random fluctuation. It has a much larger peak-to-

mean ratio than the real trace. The results are shown 

in Section 2 of the supplementary file. 5.2 Scalability 

of the algorithm We evaluate the scalability of our 

algorithm by varying the number of VMs in the 

simulation between 200 and 1400. The ratio of VM 

to PM is 10:1. The results are shown in Figure 5. The 

left figure shows that the average decision time of our 

algorithm increases with the system size. The speed 

of increase is between linear and quadratic. We break 

down the decision time into two parts: hot spot 

mitigation (marked as 'hot') and green computing 

(marked as 'cold'). We find that hot spot mitigation 

contributes more to the decision time. We also find 
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that the decision time for the synthetic workload is 

higher than that for the real trace due to the large 

variation in the synthetic workload. With 140 PMs 

and 1400 VMs, the decision time is about 1.3 seconds 

for the synthetic workload and 0.2 second for the real 

trace. The middle figure shows the average number 

of migrations in the whole system during each 

decision. The number of migrations is small and 

increases roughly linearly with the system size. We 

find that hot spot contributes more to the number of 

migrations. We also find that the number of 

migrations in the synthetic workload is higher than 

that in the real trace. With 140 PMs and 1400 VMs, 

on average each run of our algorithm incurs about 

three migrations in the whole system for the synthetic 

workload and only 1.3 migrations for the real trace. 

This is also verified by the right figure which 

computes the average number of migrations per VM 

in each decision. The figure indicates that each VM 

experiences a tiny, roughly constant number of 

migrations during a decision run, independent of the 

system size. This number is about 0.0022 for the 

synthetic workload and 0.0009 for the real trace. This 

translates into roughly one migration per 456 or 1174 

decision intervals, respectively. The stability of our 

algorithm is very good. We also conduct simulations 

by varying the VM to PM ratio. With a higher VM to 

PM ratio, the load is distributed more evenly among 

the PMs. The results are presented in Section 4 of the 

supplementary file. 5.3 Effect of load prediction We 

compare the execution of our algorithm with and 

without load prediction in Figure 6. When load 

prediction is disabled, the algorithm simply uses the 

last observed load in its decision making. Figure 6 (a) 

shows that load prediction significantly reduces the 

average number of hot spots in the system during a 

decision run. Notably, prediction prevents over 46% 

hot spots in the simulation with 1400 VMs. This 

demonstrates its high effectiveness in preventing 

server overload proactively. Without prediction, the 

algorithm tries to consolidate a PM as soon as its load 

drops below the threshold. With prediction, the 

algorithm correctly foresees that the load of the PM 

will increase above the threshold shortly and hence 

takes no action. This leaves the PM in the "cold spot" 

state for a while. However, it also reduces placement 

churns by avoiding unnecessary migrations due to 

temporary load fluctuation. 

 
Fig. 7. Algorithm effectiveness 

 

Consequently, the number of migrations in the 

system with load prediction is smaller than that 

without prediction as shown in Figure 6 (c). We can 

adjust the conservativeness of load prediction by 

tuning its parameters, but the current configuration 

largely serves our purpose (i.e., error on the side of 

caution). The only downside of having more cold 

spots in the system is that it may increase the number 

of APMs. This is investigated in Figure 6 (b) which 

shows that the average numbers of APMs remain 

essentially the same with or without load prediction 

(the difference is less than 1%). This is appealing 

because significant overload protection can be 

achieved without sacrificing resources efficiency. 

Figure 6 (c) compares the average number of 

migrations per VM in each decision with and without 

load prediction. It shows that each VM experiences 

17% fewer migrations with load prediction. 6 

Experiments Our experiments are conducted using a 

group of 30 Dell PowerEdge blade servers with Intel 

E5620 CPU and 24GB of RAM. The servers run 

Xen-3.3 and Linux 2.6.18. We periodically read load 

statistics using the xenstat library (same as what 

xentop does). The servers are connected over a 

Gigabit ethernet to a group of four NFS storage 

servers where our VM Scheduler runs. We use the 

same default parameters as in the simulation. 6.1 

Algorithm effectiveness We evaluate the 

effectiveness of our algorithm in overload mitigation 

and green computing. We start with a small scale 

experiment consisting of three PMs and five VMs so 

that we can present the results for all servers in figure 

7. Different shades are used for each VM. All VMs 

are configured with 128 MB of RAM. An Apache 

server runs on each VM. We use httperf to invoke 

CPU intensive PHP scripts on the Apache server. 

This allows us to subject the VMs to different 

degrees of CPU load by adjusting the client request 

rates. The utilization of other resources are kept low. 

We first increase the CPU load of the three VMs on 

PMi to create an overload. Our algorithm resolves the 

overload by migrating VM3 to PM3. It reaches a 

stable state under high  
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load around 420 seconds. Around 890 seconds, we 

decrease the CPU load of all VMs gradually. Because 

the FUSD prediction algorithm is conservative when 

the load decreases, it takes a while before green 

computing takes effect. Around 1700 seconds, VM3 

is migrated from PM3 to PM2 so that PM3 can be put 

into the standby mode. Around 2200 seconds, the two 

VMs on PMi are migrated to PM2 so that PMi can be 

released as well. As the load goes up and down, our 

algorithm will repeat the above process: spread over 

or consolidate the VMs as needed. Next we extend 

the scale of the experiment to 30 servers. We use the 

TPC-W benchmark for this experiment. TPC-W is an 

industry standard benchmark for e-commerce 

applications which simulates the browsing and 

buying behaviors of customers [13]. We deploy 8 

VMs on each server at the beginning. Each VM is 

configured with one virtual CPU and two gigabyte 

memory. Self-ballooning is enabled to allow the 

hypervisor to reclaim unused memory. Each VM runs 

the server side of the TPC-W benchmark 

corresponding to various types of the workloads: 

browsing, shopping, hybrid workloads, etc.. Our 

algorithm is invoked every 10 minutes. Figure 8 

shows how the number of APMs varies with the 

average number of requests to each VM over time. 

We keep the load on each VM low at the beginning. 

As a result, green computing takes effect and 

consolidates the VMs onto a smaller number of 

servers. 2 Note that each TPC-W server, even when 

idle, consumes several hundreds megabytes of 

memory. After two hours, we increase the load 

dramatically to emulate a "flash crowd" event. The 

algorithm wakes up the stand-by servers to offload 

the hot spot servers. The figure shows that the 

number of APMs increases accordingly. After the 

request rates peak for about one hour, we reduce the 

load gradually to emulate that the flash crowd is over. 

This triggers green computing again to consolidate 

the under-utilized servers. Figure 8 
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experiment. We extract the data on the 340 live 

migrations in our 30 server experiment above. We 

find that 139 of them are for hot spot mitigation. We 

focus on these migrations because that is when the 

potential impact on application performance is the 

most. Among the 139 migrations, we randomly pick 

7 corresponding TPC-W sessions undergoing live 

migration. All these sessions run the "shopping mix" 

workload with 200 emulated browsers. As a target for 

comparison, we re-run the session with the same 

parameters but perform no migration and use the 

resulting performance as the baseline. Figure 9 shows 

the normalized WIPS (Web Interactions Per Second) 

for the 7 sessions. WIPS is the performance metric 

used by TPC-W. The figure shows that most live 

migration sessions exhibit no noticeable degradation 

in performance compared to the baseline: the 

normalized WIPS is close to 1. The only exception is 

session 3 whose degraded performance is caused by 

an extremely busy server in the original experiment. 

Next we take a closer look at one of the sessions in 

figure 9 and show how its performance vary over 

time in figure 10. The dots in the figure show the 

WIPS every second. The two curves show the 

moving average over a 30 second window as 

computed by TPC-W. We marked in the figure when 

live migration starts and finishes. With self-

ballooning enabled, the amount of memory 

transferred during the migration is about 600MB. The 

figure verifies that live migration causes no 

noticeable performance degradation. The duration of 

the migration is under 10 seconds. Recall that our 

algorithm is invoked every 10 minutes. 

 
6.3 Resource balance Recall that the goal of the 

skewness algorithm is to mix workloads with 

different resource requirements together so that the 

overall utilization of server capacity is improved. In 

this experiment we see how our algorithm handles a 

mix of CPU, memory, and network intensive 

workloads. We vary the CPU load as before. We 

inject the network load by sending the VMs a series 

of network packets. The memory intensive 

applications are created by allocating memory on 

demand. Again we start with a small scale 

experiment consisting of two PMs and four VMs so 

that we can present the results for all servers in 

Figure 11. The two rows represent the two PMs. The 

two columns represent the CPU and network 

dimensions, respectively. The memory consumption 

is kept low for this experiment. Initially, the two 

VMs on PMi are CPU intensive while the two VMs 

on PM2 are network intensive. We increase the load 

of their bottleneck resources gradually. Around 500 

seconds, VM4 is migrated from PM2 to PM1 due to 

the network overload in PM2. Then around 600 

seconds, VM1 is migrated from PM1 to PM2 due to 

the CPU overload in PM1. Now the system reaches a 

stable state with a balanced resource utilization for 

both PMs - each with a CPU intensive VM and a 

network intensive VM. Later we decrease the load of 

all VMs gradually so that both PMs become cold 

spots. We can see that the two VMs on PM1 are 

consolidated to PM2 by green computing. Next we 

extend the scale of the experiment to a group of 72 

VMs running over 8 PMs. Half of the VMs are CPU 

intensive, while the other half are memory intensive. 

Initially, we keep the load of all VMs low and deploy 

all CPU intensive VMs on PM4 and PM5 while all 

memory intensive VMs on PM6 and PM7. Then we 

increase the load on all VMs gradually to make the 

underlying PMs hot spots. Figure 12 shows how the 

algorithm spreads the VMs to other PMs over time. 

As we can see from the figure, the algorithm balances 
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the two types of VMs appropriately. The figure also 

shows that the load across the set of PMs becomes 

well balanced as we increase the load. 

 

 
 

7 Related work 7.1 Resource allocation at the 

application level Automatic scaling of Web 

applications was previously studied in [14] [15] for 

data center environments. In MUSE [14] , each 

server has replicas of all web applications running in 

the system. The dispatch algorithm in a frontend L7-

switch makes sure requests are reasonably served 

while minimizing the number of under-utilized 

servers. Work [15] uses network flow algorithms to 

allocate the load of an application among its running 

instances. For connection oriented Internet services 

like Windows Live Messenger, work [10] presents an 

integrated approach for load dispatching and server 

provisioning. All works above do not use virtual 

machines and require the applications be structured in 

a multi-tier architecture with load balancing provided 

through an front-end dispatcher. In contrast, our work 

targets Amazon EC2-style environment where it 

places no restriction on what and how applications 

are constructed inside the VMs. A VM is treated like 

a blackbox. Resource management is done only at the 

granularity of whole VMs. MapReduce [16] is 

another type of popular Cloud service where data 

locality is the key to its performance. Qunicy adopts 

min-cost flow model in task scheduling to maximize 

data locality while keeping fairness among different 

jobs [17]. The "Delay Scheduling" algorithm trades 

execution time for data locality [18]. Work [19] 

assign dynamic priorities to jobs and users to 

facilitate resource allocation. 

 
 

7.2 Resource allocation by live VM migration VM 

live migration is a widely used technique for dynamic 

resource allocation in a virtualized environment [8] 

[12] [20]. Our work also belongs to this category. 

Sandpiper combines multi-dimensional load 

information into a single Volume metric [8]. It sorts 

the list of PMs based on their volumes and the VMs 

in each PM in their volume-to-size ratio (VSR). This 

unfortunately abstracts away critical information 

needed when making the migration decision. It then 

considers the PMs and the VMs in the pre-sorted 

order. We give a concrete example in Section 1 of the 

supplementary file where their algorithm selects the 

wrong VM to migrate away during overload and fails 

to mitigate the hot spot. We also compare our 

algorithm and theirs in real experiment. The results 

are analyzed in Section 5 of the supplementary file to 

show how they behave differently. In addition, their 

work has no support for green computing and differs 

from ours in many other aspects such as load 

prediction. The HARMONY system applies 

virtualization technology across multiple resource 

layers [20]. It uses VM and data migration to mitigate 

hot spots not just on the servers, but also on network 

devices and the storage nodes as well. It introduces 

the Extended Vector Product(EVP) as an indicator of 

imbalance in resource utilization. Their load 

balancing algorithm is a variant of the Toyoda 

method [21] for multi-dimensional knapsack 

problem. Unlike our system, their system does not 

support green computing and load prediction is left as 

future work. In Section 6 of the supplementary file, 

we analyze the phenomenon that VectorDot behaves 

differently compared with our work and point out the 

reason why our algorithm can utilize residual 
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resources better. Dynamic placement of virtual 

servers to minimize SLA violations is studied in [12]. 

They model it as a bin packing problem and use the 

well-known first-fit approximation algorithm to 

calculate the VM to PM layout periodically. That 

algorithm, however, is designed mostly for off-line 

use. It is likely to incur a large number of migrations 

when applied in on-line environment where the 

resource needs of VMs change dynamically. 

 

7.3 Green Computing Many efforts have been made 

to curtail energy consumption in data centers. 

Hardware based approaches include novelAt 

thermal design for lower cooling power, or adopting 

power-proportional and low-power hardware. Work 

[22] uses Dynamic Voltage and Frequency 

Scaling(DVFS) to adjust CPU power according to its 

load. We do not use DVFS for green computing, as 

explained in the Section 7 in the complementary file. 

PowerNap [23] resorts to new hardware technologies 

such as Solid State Disk(SSD) and Self-Refresh 

DRAM to implement rapid transition(less than 1ms) 

between full operation and low power state, so that it 

can "take a nap" in short idle intervals. When a server 

goes to sleep, Somniloquy [24] notifies an embedded 

system residing on a special designed NIC to 

delegate the main operating system. It gives the 

illusion that the server is always active. Our work 

belongs to the category of pure-software low-cost 

solutions [10] [12] [14] [25] [26] [27]. Similar to 

Somniloquy [24], SleepServer [26] initiates virtual 

machines on a dedicated server as delegate, instead of 

depending on a special NIC. LiteGreen [25] does not 

use a delegate. Instead it migrates the desktop OS 

away so that the desktop can sleep. It requires that the 

desktop is virtualized with shared storage. Jettison 

[27] invents "partial VM migration", a variance of 

live VM migration, which only migrates away 

necessary working set while leaving infrequently 

used data behind.  

 

VI. Conclusion 

We have presented the design, implementation, 

and evaluation of a resource management system for 

cloud computing services. Our system multiplexes 

virtual to physical resources adaptively based on the 

changing demand. We use the skewness metric to 

combine VMs with different resource characteristics 

appropriately so that the capacities of servers are well 

utilized. Our algorithm achieves both overload 

avoidance and green computing for systems with 

multi-resource constraints.  
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