
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 65|P a g e

Resource Allocation using Virtual Machines for Cloud

Computing

Shukla Sunil Kumar *, Mrs.L.Indira**
* (Department of Computer Science, M.Tech student, CMR Engineering College)

** (Asst.Professor, Department of Computer Science, CMR Engineering College, Hyderabad,

Email: indiralingineni@gmail.com)

ABSTRACT

Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of

the touted gains in the cloud model come from resource multiplexing through virtualization technology. In this

paper, we present a system that uses virtualization technology to allocate data center resources dynamically

based on application demands and support green computing by optimizing the number of servers in use. We

introduce the concept of “skewness” to measure the unevenness in the multi-dimensional resource utilization of

a server. By minimizing skewness, we can combine different types of workloads nicely and improve the overall

utilization of server resources. We develop a set of heuristics that prevent overload in the system effectively

while saving energy used. Trace driven simulation and experiment results demonstrate that our algorithm

achieves good performance.

Keywords - Cloud Computing, Resource Management, Virtualization, Green Computing

I. Introduction
The elasticity and the lack of upfront capital

investment offered by cloud computing is appealing

to many businesses. There is a lot of discussion on

the benefits and costs of the cloud model and on how

to move legacy applications onto the cloud platform.

Here we study a different problem: how can a cloud

service provider best multiplex its virtual resources

onto the physical hardware? This is important

because much of the touted gains in the cloud model

come from such multiplexing. Studies have found

that servers in many existing data centers are often

severely under-utilized due to over-provisioning for

the peak demand [1] [2]. The cloud model is

expected to make such practice unnecessary by

offering automatic scale up and down in response to

load variation. Besides reducing the hardware cost, it

also saves on electricity which contributes to a

significant portion of the operational expenses in

large data centers.Virtual machine monitors (VMMs)

like Xen provide a mechanism for mapping virtual

machines (VMs) to physical resources [3]. This

mapping is largely hidden from the cloud users.

Users with the Amazon EC2 service [4], for example,

do not know where their VM instances run. It is up to

the cloud provider to make sure the underlying

physical machines (PMs) have sufficient resources to

meet their needs. VM live migration technology

makes it possible to change the mapping between

VMs and PMs while applications are running [5], [6].

However, a policy issue remains as how to decide the

mapping adaptively so that the resource demands of

VMs are met while the number of PMs used is

minimized. This is challenging when the resource

needs of VMs are heterogeneous due to the diverse

set of applications they run and vary with time as the

workloads grow and shrink. The capacity of PMs can

also be heterogenous because multiple generations of

hardware co-exist in a data center.

We aim to achieve two goals in our algorithm:

• overload avoidance: the capacity of a PM

should be sufficient to satisfy the resource needs of

all VMs running on it. Otherwise, the PM is

overloaded and can lead to degraded performance of

its VMs.

• green computing: the number of PMs used

should be minimized as long as they can still satisfy

the needs of all VMs. Idle PMs can be turned off to

save energy.

There is an inherent trade-off between the two goals

in the face of changing resource needs of VMs. For

overload avoidance, we should keep the utilization of

PMs low to reduce the possibility of overload in case

the resource needs of VMs increase later. For green

computing, we should keep the utilization of PMs

reasonably high to make efficient use of their energy.

In this paper, we present the design and

implementation of an automated resource

management system that achieves a good balance

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 66|P a g e

between the two goals. We make the following

contributions:

• We develop a resource allocation system

that can avoid overload in the system effectively

while minimizing the number of servers used.We

introduce the concept of "skewness" to measure the

uneven utilization of a server. By minimizing

skewness, we can improve the overall utilization of

servers in the face of multi-dimensional resource

constraints.

• We design a load prediction algorithm that

can capture the future resource usages of applications

accurately without looking inside the VMs. The

algorithm can capture the rising trend of resource

usage patterns and help reduce the placement churn

significantly.

Fig. 1. System Architecture

algorithm are presented in Section 4. Section 5 and 6

present simulation and experiment results,

respectively. Section 7 discusses related work.

Section 8 concludes.

in its CPU scheduler. The MM Alloter on domain 0

of each node is responsible for adjusting the local

memory allocation.

The hot spot solver in our VM Scheduler detects if

the resource utilization of any PM is above the hot

threshold (i.e., a hot spot). If so, some VMs running

on them will be migrated away to reduce their load.

The cold spot solver checks if the average utilization

of actively used PMs (APMs) is below the green

computing threshold. If so, some of those PMs could

potentially be turned off to save energy. It identifies

the set of PMs whose utilization is below the cold

threshold (i.e., cold spots) and then attempts to

migrate away all their VMs. It then compiles a

migration list of VMs and passes it to the Usher

CTRL for execution.

II. System overview

The architecture of the system is presented in

Figure 1. Each PM runs the Xen hypervisor (VMM)

which supports a privileged domain 0 and one or

more domain U [3]. Each VM in domain U

encapsulates one or more applications such as Web

server, remote desktop, DNS, Mail, Map/Reduce, etc.

We assume all PMs share a backend storage.

The multiplexing of VMs to PMs is managed using

the Usher framework [7]. The main logic of our

system is implemented as a set of plug-ins to Usher.

Each node runs an Usher local node manager (LNM)

on domain 0 which collects the usage statistics of

resources for each VM on that node. The CPU and

network usage can be calculated by monitoring the

scheduling events in Xen. The memory usage within

a VM, however, is not visible to the hypervisor. One

approach is to infer memory shortage of a VM by

observing its swap activities [8]. Unfortunately, the

guest OS is required to install a separate swap

partition. Furthermore, it may be too late to adjust the

memory allocation by the time swapping occurs.

Instead we implemented a working set prober (WS

Prober) on each hypervisor to estimate the working

set sizes of VMs running on it. We use the random

page sampling technique as in the VMware ESX

Server [9].

The statistics collected at each PM are forwarded to

the Usher central controller (Usher CTRL) where our

VM scheduler runs. The VM Scheduler is invoked

periodically and receives from the LNM the resource

demand history of VMs, the capacity and the load

history of PMs, and the current layout of VMs on

PMs.

The scheduler has several components. The predictor

predicts the future resource demands of VMs and the

future load of PMs based on past statistics. We

compute the load of a PM by aggregating the

resource usage of its VMs. The details of the load

prediction algorithm will be described in the next

section. The LNM at each node first attempts to

satisfy the new demands locally by adjusting the

resource allocation of VMs sharing the same VMM.

Xen can change the CPU allocation among the VMs

by adjusting their weights

III. Predicting Future Resource Needs

We need to predict the future resource needs of

VMs. As said earlier, our focus is on Internet

applications. One solution is to look inside a VM for

application level statistics, e.g., by parsing logs of

pending requests. Doing so requires modification of

the VM which may not always be possible. Instead,

we make our prediction based on the past external

behaviors of VMs. Our first attempt was to calculate

an exponentially weighted moving average (EWMA)

using a TCP-like scheme:

E(t) = a E(t — 1) + (1 — a) * O(t), 0 < a < 1

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 67|P a g e

where E(t) and O(t) are the estimated and the

observed load at time t, respectively. a reflects a

tradeoff between stability and responsiveness.

We use the EWMA formula to predict the CPU load

on the DNS server in our university. We measure the

load every minute and predict the load in the next

minute. Figure 2 (a) shows the results for a = 0.7.

Each dot in the figure is an observed value and the

curve represents the predicted values. Visually, the

curve cuts through the middle of the dots which

indicates a fairly accurate prediction. This is also

verified by the statistics in Table 1. The parameters in

the parenthesis are the a values. W is the length of the

measurement window (explained later). The

"median" error is calculated as a percentage of the

observed value: \E(t) — O(t)\/O(t). The "higher" and

"lower" error percentages are the percentages of

predicted values that are higher or lower than the

observed values, respectively. As we can see, the

prediction is fairly accurate with roughly equal

percentage of higher and lower values.

Although seemingly satisfactory, this formula does

not capture the rising trends of resource usage. For

example, when we see a sequence of O(t) = 10,

20,30, and 40, it is reasonable to predict the next

value to be 50. Unfortunately,

(a) EWMA: a = 0.7, W = 1 (b) FUSD: t a = -0.2, f a = 0.7, W = 1 (c) FUSD: t a = -0.2, f a - Fig. 2. CPU

load prediction for the DNS server at our university. W is the measurement window.

when a is between 0 and 1, the predicted value is

always between the historic value and the observed

one. To reflect the "acceleration", we take an

innovative approach by setting a to a negative value.

When -1 < a < 0, the above formula can be

transformed into the following:

E(t) = — |a| * E(t — 1) + (1 + |a|) * O(t) = O(t) + |a| *

(O(t) — E(t — 1))

On the other hand, when the observed resource usage

is going down, we want to be conservative in

reducing our estimation. Hence, we use two

parameters, t a and I a, to control how quickly E(t)

adapts to changes when O(t) is increasing or

decreasing, respectively. We call this the FUSD (Fast

Up and Slow Down) algorithm. Figure 2 (b) shows

the effectiveness of the FUSD algorithm for t a = —

0.2, I a = 0.7. (These values are selected based on

field experience with traces collected for several

Internet applications.) Now the predicted values are

higher than the observed ones most of the time: 77%

according to Table 1. The median error is increased

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 68|P a g e

to 9.4% because we trade accuracy for safety. It is

still quite acceptable nevertheless.

So far we take O(t) as the last observed value. Most

applications have their SLOs specified in terms of a

certain percentiles of requests meeting a specific

performance level. More generally, we keep a

window of W recently observed values and take O(t)

as a high percentile of them. Figure 2 (c) shows the

result when W = 8 and we take the 90%th percentile

of the peak resource demand. The figure shows that

the prediction gets substantially better.

We have also investigated other prediction

algorithms. Linear Auto-Regression(AR) models, for

example, are broadly adopted in load prediction by

other works [10] [11] [12]. It models a predictive

value as linear function of its past observations.

Model parameters are determined by training with

historical values. AR predictors are capable of

incorporating the seasonal pattern of load change. For

instance, the SPAR(4,2) [10] estimate the future

logging rate of MSN clients from six past

observations, two of which are the latest observations

and the other four at the same time in the last four

weeks.

We compare SPAR(4,2) and FUSD(-0.2,0.7) in

figure 3. 'lpct' refers to the percentage of low errors

while 'std' refers to standard deviation. Both

algorithms are used to predict the CPU utilization of

the aforementioned DNS server in a one-day

duration. The predicting window is eight minute. The

standard deviation (std) of SPAR (4,2) is about 16%

smaller than that of FUSD (-0.2,0.7), which means

SPAR (4,2) achieves sightly better percision. This is

because it takes advantage of tiding pattern of the

load. However, SPAR(4,2) neither avoid low

prediction nor smooth the load. The requirement of a

training phase to determine parameters is

inconvenient, especially when the load pattern

changes. Therefore we adopt the simpler EWMA

variance. Thorough investigation on prediction

algorithms are left as future work.

As we will see later in the paper, the prediction

algorithm plays an important role in improving the

stability and performance of our resource allocation

decisions.

IV. The Skewness Algorithm

Analysis of the algorithm is presented in Section 1 in

the complementary file.

4.1 Hot and cold spots Our algorithm executes

periodically to evaluate the resource allocation status

based on the predicted future resource demands of

VMs. We define a server as a hot spot if the

utilization of any of its resources is above a hot

threshold. This indicates that the server is overloaded

and hence some VMs running on it should be

migrated away. We define the temperature of a hot

spot p as the square sum of its resource utilization

beyond the hot threshold:

where R is the set of overloaded resources in server p

and rt is the hot threshold for resource r. (Note that

only overloaded resources are considered in the

calculation.) The temperature of a hot spot reflects its

degree of overload. If a server is not a hot spot, its

temperature is zero. We define a server as a cold spot

if the utilizations of all its resources are below a cold

threshold. This indicates that the server is mostly idle

and a potential candidate to turn off to save energy.

However, we do so only when the average resource

utilization of all actively used servers (i.e., APMs) in

the system is below a green computing threshold. A

server is actively used if it has at least one VM

running. Otherwise, it is inactive. Finally, we define

the warm threshold to be a level of resource

utilization that is sufficiently high to justify having

the server running but not so high as to risk becoming

a hot spot in the face of temporary fluctuation of

application resource demands. Different types of

resources can have different thresholds. For example,

we can define the hot thresholds for CPU and

memory resources to be 90% and 80%, respectively.

Thus a server is a hot spot if either its CPU usage is

above 90% or its memory usage is above 80%.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 69|P a g e

4.2 Hot spot mitigation We sort the list of hot spots in

the system in descending temperature (i.e., we handle

the hottest one first). Our goal is to eliminate all hot

spots if possible. Otherwise, keep their temperature

as low as possible. For each server p, we first decide

which of its VMs should be migrated away. We sort

its list of VMs based on the resulting temperature of

the server if that VM is migrated away. We aim to

migrate away the VM that can reduce the server's

temperature the most. In case of ties, we select the

VM whose removal can reduce the skewness of the

server the most. For each VM in the list, we see if we

can find a destination server to accommodate it. The

server must not become a hot spot after accepting this

VM. Among all such servers, we select one whose

skewness can be reduced the most by accepting this

VM. Note that this reduction can be negative which

means we select the server whose skewness increases

the least. If a destination server is found, we record

the migration of the VM to that server and update the

predicted load of related servers. Otherwise, we move

on to the next VM in the list and try to find a

destination server for it. As long as we can find a

destination server for any of its VMs, we consider

this run of the algorithm a success and then move on

to the next hot spot. Note that each run of the

algorithm migrates away at most one VM from the

overloaded server. This does not necessarily

eliminate the hot spot, but at least reduces its

temperature. If it remains a hot spot in the next

decision run, the algorithm will repeat this process. It

is possible to design the algorithm so that it can

migrate away multiple VMs during each run. But this

can add more load on the related servers during a

period when they are already overloaded. We decide

to use this more conservative approach and leave the

system some time to react before initiating additional

migrations. 4.3 Green computing When the resource

utilization of active servers is too low, some of them

can be turned off to save energy. This is handled in

our green computing algorithm. The challenge here is

to reduce the number of active servers during low

load without sacrificing performance either now or in

the future. We need to avoid oscillation in the system.

Our green computing algorithm is invoked when the

average utilizations of all resources on active servers

are below the green computing threshold. We sort the

list of cold spots in the system based on the

ascending order of their memory size. Since we need

to migrate away all its VMs before we can shut down

an under-utilized server, we define the memory size

of a cold spot as the aggregate memory size of all

VMs running on it. Recall that our model assumes all

VMs connect to a shared back-end storage. Hence,

the cost of a VM live migration is determined mostly

by its memory footprint. The Section 7 in the

complementary file explains why the memory is a

good measure in depth. We try to eliminate the cold

spot with the lowest cost first. For a cold spot p, we

check if we can migrate all its VMs somewhere else.

For each VM on p, we try to find a destination server

to accommodate it. The resource utilizations of the

server after accepting the VM must be below the

warm threshold. While we can save energy by

consolidating under-utilized servers, overdoing it

may create hot spots in the future. The warm

threshold is designed to prevent that. If multiple

servers satisfy the above criterion, we prefer one that

is not a current cold spot. This is because increasing

load on a cold spot reduces the likelihood that it can

be eliminated. However, we will accept a cold spot as

the destination server if necessary. All things being

equal, we select a destination server whose skewness

can be reduced the most by accepting this VM. If we

can find destination servers for all VMs on a cold

spot, we record the sequence of migrations and

update the predicted load of related servers.

Otherwise, we do not migrate any of its VMs. The

list of cold spots is also updated because some of

them may no longer be cold due to the proposed VM

migrations in the above process. The above

consolidation adds extra load onto the related servers.

This is not as serious a problem as in the hot spot

mitigation case because green computing is initiated

only when the load in the system is low.

Nevertheless, we want to bound the extra load due to

server consolidation. We restrict the number of cold

spots that can be eliminated in each run of the

algorithm to be no more than a certain percentage of

active servers in the system. This is called the

consolidation limit. Note that we eliminate cold spots

in the system only when the average load of all active

servers (APMs) is below the green computing

threshold. Otherwise, we leave those cold spots there

as potential destination machines for future

offloading. This is consistent with our philosophy

that green computing should be conducted

conservatively. 4.4 Consolidated movements The

movements generated in each step above are not

executed until all steps have finished. The list of

movements are then consolidated so that each VM is

moved at most once to its final destination. For

example, hot spot mitigation may dictate a VM to

move from PM A to PM B, while green computing

dictates it to move from PM B to PM C. In the actual

execution, the VM is moved from A to C directly.

V. Simulations
We evaluate the performance of our algorithm

using trace driven simulation. Note that our

simulation uses the same code base for the algorithm

as the real implementation in the experiments. This

ensures the fidelity of our simulation results. Traces

are per-minute server resource utilization, such as

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 70|P a g e

CPU rate, memory usage, and network traffic

statistics, collected using tools like "perfmon"

(Windows), the "/proc" file system (Linux),

"pmstat/vmstat/netstat" commands (Solaris), etc.. The

raw traces are pre-processed into "Usher" format so

that the simulator can read them. We collected the

traces from a variety of sources: • Web InfoMall: the

largest online Web archive in China (i.e., the

counterpart of Internet Archive in the US) with more

than three billion archived Web pages. • RealCourse:

the largest online distance learning system in China

with servers distributed across 13 major cities. •

AmazingStore: the largest P2P storage system in

China. We also collected traces from servers and

desktop computers in our university including one of

our mail servers, the central DNS server, and

desktops in our department.We post-processed the

traces based on days collected and use random

sampling and linear combination of the data sets to

generate the workloads needed. All simulation in this

section uses the real trace workload unless otherwise

specified. The default parameters we use in the

simulation are shown in Table 2. We used the FUSD

load prediction algorithm with t a = —0.2, I a = 0.7,

and W = 8. In a dynamic system, those parameters

represent good knobs to tune the performance of the

system adaptively. We choose the default parameter

values based on empirical experience working with

many Internet applications. In the future, we plan to

explore using AI or control theoretic approach to find

near optimal values automatically. 5.1 Effect of

thresholds on APMs We first evaluate the effect of

the various thresholds used in our algorithm. We

simulate a system with 100 PMs and 1000 VMs

(selected randomly from the trace). We use random

VM to PM mapping in the initial layout. The

scheduler is invoked once per minute. The bottom

part of Figure 4 show the daily load variation in the

system. The x-axis is the time of the day starting at

8am. The y-axis is overloaded with two meanings:

the percentage of the load or from A to C directly.

Fig. 4. Impact of thresholds on the number of APMs

the percentage of APMs (i.e., Active PMs) in the

system. Recall that a PM is active (i.e., an APM) if it

has at least one VM running. As can be seen from the

figure, the CPU load demonstrates diurnal patterns

which decreases substantially after midnight. The

memory consumption is fairly stable over the time.

The network utilization stays very low. The top part

of figure 4 shows how the percentage of APMs vary

with the load for different thresholds in our

algorithm. For example, 'h0.7 g0.3 c0.1' means that

the hot, the green computing, and the cold thresholds

are 70%, 30%, and 10%, respectively. Parameters not

shown in the figure take the default values in Table 2.

Our algorithm can be made more or less aggressive in

its migration decision by tuning the thresholds. The

figure shows that lower hot thresholds cause more

aggressive migrations to mitigate hot spots in the

system and increases the number of APMs, and

higher cold and green computing thresholds cause

more aggressive consolidation which leads to a

smaller number of APMs. With the default thresholds

in Table 2, the percentage of APMs in our algorithm

follows the load pattern closely. To examine the

performance of our algorithm in more extreme

situations, we also create a synthetic workload which

mimics the shape of a sine function (only the positive

part) and ranges from 15% to 95% with a 20%

random fluctuation. It has a much larger peak-to-

mean ratio than the real trace. The results are shown

in Section 2 of the supplementary file. 5.2 Scalability

of the algorithm We evaluate the scalability of our

algorithm by varying the number of VMs in the

simulation between 200 and 1400. The ratio of VM

to PM is 10:1. The results are shown in Figure 5. The

left figure shows that the average decision time of our

algorithm increases with the system size. The speed

of increase is between linear and quadratic. We break

down the decision time into two parts: hot spot

mitigation (marked as 'hot') and green computing

(marked as 'cold'). We find that hot spot mitigation

contributes more to the decision time. We also find

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 71|P a g e

that the decision time for the synthetic workload is

higher than that for the real trace due to the large

variation in the synthetic workload. With 140 PMs

and 1400 VMs, the decision time is about 1.3 seconds

for the synthetic workload and 0.2 second for the real

trace. The middle figure shows the average number

of migrations in the whole system during each

decision. The number of migrations is small and

increases roughly linearly with the system size. We

find that hot spot contributes more to the number of

migrations. We also find that the number of

migrations in the synthetic workload is higher than

that in the real trace. With 140 PMs and 1400 VMs,

on average each run of our algorithm incurs about

three migrations in the whole system for the synthetic

workload and only 1.3 migrations for the real trace.

This is also verified by the right figure which

computes the average number of migrations per VM

in each decision. The figure indicates that each VM

experiences a tiny, roughly constant number of

migrations during a decision run, independent of the

system size. This number is about 0.0022 for the

synthetic workload and 0.0009 for the real trace. This

translates into roughly one migration per 456 or 1174

decision intervals, respectively. The stability of our

algorithm is very good. We also conduct simulations

by varying the VM to PM ratio. With a higher VM to

PM ratio, the load is distributed more evenly among

the PMs. The results are presented in Section 4 of the

supplementary file. 5.3 Effect of load prediction We

compare the execution of our algorithm with and

without load prediction in Figure 6. When load

prediction is disabled, the algorithm simply uses the

last observed load in its decision making. Figure 6 (a)

shows that load prediction significantly reduces the

average number of hot spots in the system during a

decision run. Notably, prediction prevents over 46%

hot spots in the simulation with 1400 VMs. This

demonstrates its high effectiveness in preventing

server overload proactively. Without prediction, the

algorithm tries to consolidate a PM as soon as its load

drops below the threshold. With prediction, the

algorithm correctly foresees that the load of the PM

will increase above the threshold shortly and hence

takes no action. This leaves the PM in the "cold spot"

state for a while. However, it also reduces placement

churns by avoiding unnecessary migrations due to

temporary load fluctuation.

Fig. 7. Algorithm effectiveness

Consequently, the number of migrations in the

system with load prediction is smaller than that

without prediction as shown in Figure 6 (c). We can

adjust the conservativeness of load prediction by

tuning its parameters, but the current configuration

largely serves our purpose (i.e., error on the side of

caution). The only downside of having more cold

spots in the system is that it may increase the number

of APMs. This is investigated in Figure 6 (b) which

shows that the average numbers of APMs remain

essentially the same with or without load prediction

(the difference is less than 1%). This is appealing

because significant overload protection can be

achieved without sacrificing resources efficiency.

Figure 6 (c) compares the average number of

migrations per VM in each decision with and without

load prediction. It shows that each VM experiences

17% fewer migrations with load prediction. 6

Experiments Our experiments are conducted using a

group of 30 Dell PowerEdge blade servers with Intel

E5620 CPU and 24GB of RAM. The servers run

Xen-3.3 and Linux 2.6.18. We periodically read load

statistics using the xenstat library (same as what

xentop does). The servers are connected over a

Gigabit ethernet to a group of four NFS storage

servers where our VM Scheduler runs. We use the

same default parameters as in the simulation. 6.1

Algorithm effectiveness We evaluate the

effectiveness of our algorithm in overload mitigation

and green computing. We start with a small scale

experiment consisting of three PMs and five VMs so

that we can present the results for all servers in figure

7. Different shades are used for each VM. All VMs

are configured with 128 MB of RAM. An Apache

server runs on each VM. We use httperf to invoke

CPU intensive PHP scripts on the Apache server.

This allows us to subject the VMs to different

degrees of CPU load by adjusting the client request

rates. The utilization of other resources are kept low.

We first increase the CPU load of the three VMs on

PMi to create an overload. Our algorithm resolves the

overload by migrating VM3 to PM3. It reaches a

stable state under high

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 72|P a g e

load around 420 seconds. Around 890 seconds, we

decrease the CPU load of all VMs gradually. Because

the FUSD prediction algorithm is conservative when

the load decreases, it takes a while before green

computing takes effect. Around 1700 seconds, VM3

is migrated from PM3 to PM2 so that PM3 can be put

into the standby mode. Around 2200 seconds, the two

VMs on PMi are migrated to PM2 so that PMi can be

released as well. As the load goes up and down, our

algorithm will repeat the above process: spread over

or consolidate the VMs as needed. Next we extend

the scale of the experiment to 30 servers. We use the

TPC-W benchmark for this experiment. TPC-W is an

industry standard benchmark for e-commerce

applications which simulates the browsing and

buying behaviors of customers [13]. We deploy 8

VMs on each server at the beginning. Each VM is

configured with one virtual CPU and two gigabyte

memory. Self-ballooning is enabled to allow the

hypervisor to reclaim unused memory. Each VM runs

the server side of the TPC-W benchmark

corresponding to various types of the workloads:

browsing, shopping, hybrid workloads, etc.. Our

algorithm is invoked every 10 minutes. Figure 8

shows how the number of APMs varies with the

average number of requests to each VM over time.

We keep the load on each VM low at the beginning.

As a result, green computing takes effect and

consolidates the VMs onto a smaller number of

servers. 2 Note that each TPC-W server, even when

idle, consumes several hundreds megabytes of

memory. After two hours, we increase the load

dramatically to emulate a "flash crowd" event. The

algorithm wakes up the stand-by servers to offload

the hot spot servers. The figure shows that the

number of APMs increases accordingly. After the

request rates peak for about one hour, we reduce the

load gradually to emulate that the flash crowd is over.

This triggers green computing again to consolidate

the under-utilized servers. Figure 8

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 73|P a g e

experiment. We extract the data on the 340 live

migrations in our 30 server experiment above. We

find that 139 of them are for hot spot mitigation. We

focus on these migrations because that is when the

potential impact on application performance is the

most. Among the 139 migrations, we randomly pick

7 corresponding TPC-W sessions undergoing live

migration. All these sessions run the "shopping mix"

workload with 200 emulated browsers. As a target for

comparison, we re-run the session with the same

parameters but perform no migration and use the

resulting performance as the baseline. Figure 9 shows

the normalized WIPS (Web Interactions Per Second)

for the 7 sessions. WIPS is the performance metric

used by TPC-W. The figure shows that most live

migration sessions exhibit no noticeable degradation

in performance compared to the baseline: the

normalized WIPS is close to 1. The only exception is

session 3 whose degraded performance is caused by

an extremely busy server in the original experiment.

Next we take a closer look at one of the sessions in

figure 9 and show how its performance vary over

time in figure 10. The dots in the figure show the

WIPS every second. The two curves show the

moving average over a 30 second window as

computed by TPC-W. We marked in the figure when

live migration starts and finishes. With self-

ballooning enabled, the amount of memory

transferred during the migration is about 600MB. The

figure verifies that live migration causes no

noticeable performance degradation. The duration of

the migration is under 10 seconds. Recall that our

algorithm is invoked every 10 minutes.

6.3 Resource balance Recall that the goal of the

skewness algorithm is to mix workloads with

different resource requirements together so that the

overall utilization of server capacity is improved. In

this experiment we see how our algorithm handles a

mix of CPU, memory, and network intensive

workloads. We vary the CPU load as before. We

inject the network load by sending the VMs a series

of network packets. The memory intensive

applications are created by allocating memory on

demand. Again we start with a small scale

experiment consisting of two PMs and four VMs so

that we can present the results for all servers in

Figure 11. The two rows represent the two PMs. The

two columns represent the CPU and network

dimensions, respectively. The memory consumption

is kept low for this experiment. Initially, the two

VMs on PMi are CPU intensive while the two VMs

on PM2 are network intensive. We increase the load

of their bottleneck resources gradually. Around 500

seconds, VM4 is migrated from PM2 to PM1 due to

the network overload in PM2. Then around 600

seconds, VM1 is migrated from PM1 to PM2 due to

the CPU overload in PM1. Now the system reaches a

stable state with a balanced resource utilization for

both PMs - each with a CPU intensive VM and a

network intensive VM. Later we decrease the load of

all VMs gradually so that both PMs become cold

spots. We can see that the two VMs on PM1 are

consolidated to PM2 by green computing. Next we

extend the scale of the experiment to a group of 72

VMs running over 8 PMs. Half of the VMs are CPU

intensive, while the other half are memory intensive.

Initially, we keep the load of all VMs low and deploy

all CPU intensive VMs on PM4 and PM5 while all

memory intensive VMs on PM6 and PM7. Then we

increase the load on all VMs gradually to make the

underlying PMs hot spots. Figure 12 shows how the

algorithm spreads the VMs to other PMs over time.

As we can see from the figure, the algorithm balances

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 74|P a g e

the two types of VMs appropriately. The figure also

shows that the load across the set of PMs becomes

well balanced as we increase the load.

7 Related work 7.1 Resource allocation at the

application level Automatic scaling of Web

applications was previously studied in [14] [15] for

data center environments. In MUSE [14] , each

server has replicas of all web applications running in

the system. The dispatch algorithm in a frontend L7-

switch makes sure requests are reasonably served

while minimizing the number of under-utilized

servers. Work [15] uses network flow algorithms to

allocate the load of an application among its running

instances. For connection oriented Internet services

like Windows Live Messenger, work [10] presents an

integrated approach for load dispatching and server

provisioning. All works above do not use virtual

machines and require the applications be structured in

a multi-tier architecture with load balancing provided

through an front-end dispatcher. In contrast, our work

targets Amazon EC2-style environment where it

places no restriction on what and how applications

are constructed inside the VMs. A VM is treated like

a blackbox. Resource management is done only at the

granularity of whole VMs. MapReduce [16] is

another type of popular Cloud service where data

locality is the key to its performance. Qunicy adopts

min-cost flow model in task scheduling to maximize

data locality while keeping fairness among different

jobs [17]. The "Delay Scheduling" algorithm trades

execution time for data locality [18]. Work [19]

assign dynamic priorities to jobs and users to

facilitate resource allocation.

7.2 Resource allocation by live VM migration VM

live migration is a widely used technique for dynamic

resource allocation in a virtualized environment [8]

[12] [20]. Our work also belongs to this category.

Sandpiper combines multi-dimensional load

information into a single Volume metric [8]. It sorts

the list of PMs based on their volumes and the VMs

in each PM in their volume-to-size ratio (VSR). This

unfortunately abstracts away critical information

needed when making the migration decision. It then

considers the PMs and the VMs in the pre-sorted

order. We give a concrete example in Section 1 of the

supplementary file where their algorithm selects the

wrong VM to migrate away during overload and fails

to mitigate the hot spot. We also compare our

algorithm and theirs in real experiment. The results

are analyzed in Section 5 of the supplementary file to

show how they behave differently. In addition, their

work has no support for green computing and differs

from ours in many other aspects such as load

prediction. The HARMONY system applies

virtualization technology across multiple resource

layers [20]. It uses VM and data migration to mitigate

hot spots not just on the servers, but also on network

devices and the storage nodes as well. It introduces

the Extended Vector Product(EVP) as an indicator of

imbalance in resource utilization. Their load

balancing algorithm is a variant of the Toyoda

method [21] for multi-dimensional knapsack

problem. Unlike our system, their system does not

support green computing and load prediction is left as

future work. In Section 6 of the supplementary file,

we analyze the phenomenon that VectorDot behaves

differently compared with our work and point out the

reason why our algorithm can utilize residual

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 75|P a g e

resources better. Dynamic placement of virtual

servers to minimize SLA violations is studied in [12].

They model it as a bin packing problem and use the

well-known first-fit approximation algorithm to

calculate the VM to PM layout periodically. That

algorithm, however, is designed mostly for off-line

use. It is likely to incur a large number of migrations

when applied in on-line environment where the

resource needs of VMs change dynamically.

7.3 Green Computing Many efforts have been made

to curtail energy consumption in data centers.

Hardware based approaches include novelAt

thermal design for lower cooling power, or adopting

power-proportional and low-power hardware. Work

[22] uses Dynamic Voltage and Frequency

Scaling(DVFS) to adjust CPU power according to its

load. We do not use DVFS for green computing, as

explained in the Section 7 in the complementary file.

PowerNap [23] resorts to new hardware technologies

such as Solid State Disk(SSD) and Self-Refresh

DRAM to implement rapid transition(less than 1ms)

between full operation and low power state, so that it

can "take a nap" in short idle intervals. When a server

goes to sleep, Somniloquy [24] notifies an embedded

system residing on a special designed NIC to

delegate the main operating system. It gives the

illusion that the server is always active. Our work

belongs to the category of pure-software low-cost

solutions [10] [12] [14] [25] [26] [27]. Similar to

Somniloquy [24], SleepServer [26] initiates virtual

machines on a dedicated server as delegate, instead of

depending on a special NIC. LiteGreen [25] does not

use a delegate. Instead it migrates the desktop OS

away so that the desktop can sleep. It requires that the

desktop is virtualized with shared storage. Jettison

[27] invents "partial VM migration", a variance of

live VM migration, which only migrates away

necessary working set while leaving infrequently

used data behind.

VI. Conclusion

We have presented the design, implementation,

and evaluation of a resource management system for

cloud computing services. Our system multiplexes

virtual to physical resources adaptively based on the

changing demand. We use the skewness metric to

combine VMs with different resource characteristics

appropriately so that the capacities of servers are well

utilized. Our algorithm achieves both overload

avoidance and green computing for systems with

multi-resource constraints.

Acknowledgements

The authors would like to thank the anonymous

reviewers for their invaluable feedback. This work

was supported by the National Natural Science

Foundation of China (Grant No. 61170056) and

National Development and Reform Commission

(Information Security 2011, CNGI2008-108).

References
[1] M. Armbrust et al., "Above the clouds: A

berkeley view of cloud computing,"

University of California, Berkeley, Tech.

Rep., Feb 2009.

[2] L. Siegele, "Let it rise: A special report on

corporate IT," in The Economist, Oct. 2008.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield, "Xen and the art of

visualization," in Proc. of the ACM

Symposium on Operating Systems Principles

(SOSP'03), Oct. 2003.

[4] "Amazon elastic compute cloud (Amazon

EC2), http://aws.amazon.com/ec2/."

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E.

Jul, C. Limpach, I. Pratt, and A. Warfield,

"Live migration of virtual machines," in Proc.

of the Symposium on Networked Systems

Design and Implementation (NSDI'05), May

2005.

[6] M. Nelson, B.-H. Lim, and G. Hutchins,

"Fast transparent migration for virtual

machines," in Proc. of the USENIX Annual

Technical Conference, 2005.

[7] M. McNett, D. Gupta, A. Vahdat, and G. M.

Voelker, "Usher: An extensible framework

for managing clusters of virtual machines," in

Proc. of the Large Installation System

Administration Conference (LISA'07), Nov.

2007.

[8] T. Wood, P. Shenoy, A. Venkataramani, and

M. Yousif, "Black-box and gray-box

strategies for virtual machine migration," in

Proc. of the Symposium on Networked

Systems Design and Implementation

(NSDI'07), Apr. 2007.

[9] C. A. Waldspurger, "Memory resource

management in VMware ESX server," in

Proc. of the symposium on Operating systems

design and implementation (OSDI'02), Aug.

2002.

[10] G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas,

L. Xiao, and F. Zhao, "Energy-aware server

provisioning and load dispatching for

connection-intensive internet services," in

Proc. of the USENIX Symposium on

Networked Systems Design and

Implementation (NSDI'08), Apr. 2008.

[11] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M.

Uysal, Z. Wang, S. Singhal, and A. Merchant,

"Automated control of multiple virtualized

resources," in Proc. of the ACM European

http://aws.amazon.com/ec2/

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 76|P a g e

conference on Computer systems

(EuroSys'09), 2009.

[12] N. Bobroff, A. Kochut, and K. Beaty,

"Dynamic placement of virtual machines for

managing sla violations," in Proc. of the

IFIP/IEEE International Symposium on

Integrated Network Management (IM'07),

2007.

[13] "TPC-W: Transaction processing

performance council,

http://www.tpc.org/tpcw/."

[14] J. S. Chase, D. C. Anderson, P. N. Thakar, A.

M. Vahdat, and R. P. Doyle, "Managing

energy and server resources in hosting

centers," in Proc. of the ACM Symposium on

Operating System Principles (SOSP'01), Oct.

2001.

[15] C. Tang, M. Steinder, M. Spreitzer, and G.

Pacifici, "A scalable application placement

controller for enterprise data centers," in

Proc. of the International World Wide Web

Conference (WWW'07), May 2007.

[16] M. Zaharia, A. Konwinski, A. D. Joseph, R.

H. Katz, and I. Stoica, "Improving

MapReduce performance in heterogeneous

environments," in Proc. of the Symposium on

Operating Systems Design and

Implementation (OSDI'08), 2008.

[17] M. Isard, V. Prabhakaran, J. Currey, U.

Wieder, K. Talwar, and A. Goldberg,

"Quincy: Fair scheduling for distributed

computing clusters," in Proc. of the ACM

Symposium on Operating System Principles

(SOSP'09), Oct. 2009.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K.

Elmeleegy, S. Shenker, and I. Stoica, "Delay

scheduling: a simple technique for achieving

locality and fairness in cluster scheduling," in

Proc. of the European conference on

Computer systems (EuroSys'10), 2010.

[19] T. Sandholm and K. Lai, "Mapreduce

optimization using regulated dynamic

prioritization," in Proc. of the international

joint conference on Measurement and

modeling of computer systems

(SIGMETRICS'09), 2009.

[20] A. Singh, M. Korupolu, and D. Mohapatra,

"Server-storage virtualization: integration and

load balancing in data centers," in Proc. of

the ACM/IEEE conference on

Supercomputing, 2008.

[21] Y. Toyoda, "A simplified algorithm for

obtaining approximate solutions to zero-one

programming problems," Management

Science, vol. 21, pp. 1417-1427, august 1975.

[22] R. Nathuji and K. Schwan, "Virtualpower:

coordinated power management in virtualized

enterprise systems," in Proc. of the ACM

SIGOPS symposium on Operating systems

principles (SOSP'07), 2007.

[23] D. Meisner, B. T. Gold, and T. F. Wenisch,

"Powernap: eliminating server idle power," in

Proc. of the international conference on

Architectural support for programming

languages and operating systems

(ASPLOS'09), 2009.

[24] Y. Agarwal, S. Hodges, R. Chandra, J. Scott,

P. Bahl, and R. Gupta, "Somniloquy:

augmenting network interfaces to reduce pc

energy usage," in Proc. of the USENIX

symposium on Networked systems design

and implementation (NSDI'09), 2009.

[25] T. Das, P. Padala, V. N. Padmanabhan, R.

Ramjee, and K. G. Shin, "Litegreen: saving

energy in networked desktops using

virtualization," in Proc. of the USENIX

Annual Technical Conference, 2010.

[26] Y. Agarwal, S. Savage, and R. Gupta,

"Sleepserver: a software-only approach for

reducing the energy consumption of pcs

within enterprise environments," in Proc. of

the USENIX Annual Technical Conference,

2010.

[27] N. Bila, E. d. Lara, K. Joshi, H. A. Lagar-

Cavilla, M. Hiltunen, and M. Satyanarayanan,

"Jettison: Efficient idle desktop consolidation

with partial vm migration," in Proc. of the

ACM European conference on Computer

systems (EuroSys'12), 2012.

http://www.tpc.org/tpcw/

